Cross-validation is dead. Long live cross-validation! Model validation based on resampling
نویسندگان
چکیده
منابع مشابه
Cross-validation is dead. Long live cross-validation! Model validation based on resampling
Cross-validation was originally invented to estimate the prediction error of a mathematical modelling procedure. It can be shown that cross-validation estimates the prediction error almost unbiasedly. Nonetheless, there are numerous reports in the chemoinformatic literature that cross-validated figures of merit cannot be trusted and that a so-called external test set has to be used to estimate ...
متن کاملCustomer Validation in Cross-Dock
Considering the importance of validation of customers in the cross-dock and since this is one of the problems of implementing cross-dock system in Iran, this study attempted to extract customer validation criteria. The purpose of the research is to eliminate the distrust of distributors in receiving the funds of the sent items and the statistical sample of this research is the experts of the sy...
متن کاملOn Cross Validation for Model Selection
In response to Zhu and Rower (1996), a recent communication (Goutte, 1997) established that leave-one-out cross validation is not subject to the "no-free-lunch" criticism. Despite this optimistic conclusion, we show here that cross validation has very poor performances for the selection of linear models as compared to classic statistical tests. We conclude that the statistical tests are prefera...
متن کاملCross-validation of matching correlation analysis by resampling matching weights
The strength of association between a pair of data vectors is represented by a nonnegative real number, called matching weight. For dimensionality reduction, we consider a linear transformation of data vectors, and define a matching error as the weighted sum of squared distances between transformed vectors with respect to the matching weights. Given data vectors and matching weights, the optima...
متن کاملFast cross-validation of high-breakdown resampling methods for PCA
Cross-validation (CV) is a very popular technique for model selection and model validation. The general procedure of leave-one-out CV is to exclude one observation from the data set, to construct the fit of the remaining observations and to evaluate that fit on the item that was left out. In classical procedures such as least-squares regression or kernel density estimation, easy formulas can be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cheminformatics
سال: 2010
ISSN: 1758-2946
DOI: 10.1186/1758-2946-2-s1-o5